首页> 外文OA文献 >A successive difference-of-convex approximation method for a class of nonconvex nonsmooth optimization problems
【2h】

A successive difference-of-convex approximation method for a class of nonconvex nonsmooth optimization problems

机译:一类连续的凸差近似方法   非凸非光滑优化问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider a class of nonconvex nonsmooth optimization problems whoseobjective is the sum of a nonnegative smooth function and a bunch ofnonnegative proper closed possibly nonsmooth functions (whose proximal mappingsare easy to compute), some of which are further composed with linear maps. Thiskind of problems arises naturally in various applications when differentregularizers are introduced for inducing simultaneous structures in thesolutions. Solving these problems, however, can be challenging because of thecoupled nonsmooth functions: the corresponding proximal mapping can be hard tocompute so that standard first-order methods such as the proximal gradientalgorithm cannot be applied efficiently. In this paper, we propose a successivedifference-of-convex approximation method for solving this kind of problems. Inthis algorithm, we approximate the nonsmooth functions by their Moreauenvelopes in each iteration. Making use of the simple observation that Moreauenvelopes of nonnegative proper closed functions are continuousdifference-of-convex functions, we can then approximately minimize theapproximation function by first-order methods with suitable majorizationtechniques. These first-order methods can be implemented efficiently thanks tothe fact that the proximal mapping of each nonsmooth function is easy tocompute. Under suitable assumptions, we prove that the sequence generated byour method is bounded and clusters at a stationary point of the objective. Wealso discuss how our method can be applied to concrete applications such asnonconvex fused regularized optimization problems and simultaneously structuredmatrix optimization problems, and illustrate the performance numerically forthese two specific applications.
机译:我们考虑一类非凸非光滑优化问题,其目标是非负光滑函数与一堆非负固有闭合可能非光滑函数(其近端映射易于计算)的和,其中一些进一步由线性映射组成。当引入不同的调节剂以诱导溶液中的同时结构时,在各种应用中自然会出现这种问题。然而,由于耦合的非光滑函数,解决这些问题可能是具有挑战性的:相应的近端贴图可能难以计算,因此无法有效地应用诸如近端梯度算法之类的标准一阶方法。在本文中,我们提出了一种连续的凸差近似方法来解决这类问题。在该算法中,我们通过每次迭代中的非光滑函数的Moreauenvelopes近似它们。利用简单的观察结果,即非负固有闭合函数的Moreauenvelopes是连续的凸差分函数,然后我们可以通过一阶方法采用合适的主化技术来近似最小化逼近函数。由于易于计算每个非平滑函数的近端映射,因此可以有效地实现这些一阶方法。在适当的假设下,我们证明了由我们的方法生成的序列是有界的并且聚集在目标的固定点上。我们还将讨论如何将我们的方法应用于具体应用,例如非凸融合正则化优化问题和同时结构化矩阵优化问题,并从数字上说明两种特定应用的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号